• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Fakülteler
  • Sağlık Bilimleri Fakültesi
  • Fizyoterapi ve Rehabilitasyon Bölümü
  • Makale Koleksiyonu
  • View Item
  •   DSpace Home
  • Fakülteler
  • Sağlık Bilimleri Fakültesi
  • Fizyoterapi ve Rehabilitasyon Bölümü
  • Makale Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The impact of chemical modifications on gamma-ray attenuation properties of some WO3-reinforced tellurite glasses

Thumbnail

View/Open

Tam Metin / Full Text (1.052Mb)

Date

2023

Author

Almisned, Ghada
Rabaa, Elaf
Şen Baykal, Duygu
Ilık, Erkan
Kılıç, Gökhan
Zakaly, Hesham M. H.
Ene, Antoaneta
Tekin, Hüseyin Ozan

Metadata

Show full item record

Citation

ALMisned, G; Rabaa, E; Şen Baykal, D; Ilık, E; Kılıç, G; Zakaly, HMH; Ene, A; Tekin, HO. The impact of chemical modifications on gamma-ray attenuation properties of some WO3-reinforced tellurite glasses. Open Chemistry (2023). 21(1).

Abstract

We report the role of the chemical modifications on various gamma-ray attenuation properties of four different tellurite glasses reinforced through WO3. The chemical compositions and glass densities are used in terms of determining some critical attenuation properties, such as linear and mass attenuation coefficients, half value layer, and effective atomic number values. Based on the rise in density, it was determined that the maximum concentration of WO3 also resulted in a significant change in the overall gamma-ray absorption properties, when all of the study's findings were examined. It was observed that the glass sample, in which TeO2 and WO3 were 40 mol%, had the highest density. It was found that this glass with the highest density has the highest linear attenuation coefficient and mass attenuation coefficient and the lowest half value layer among the four samples specified. This demonstrates that WO3 inclusion is a functional component that may be used in tellurium glasses and is a suitable material for situations requiring increased gamma-ray absorption properties.

Source

Open Chemistry

Volume

21

Issue

1

URI

https://www.degruyter.com/document/doi/10.1515/chem-2022-0297/html
https://hdl.handle.net/20.500.12780/637

Collections

  • Makale Koleksiyonu [43]
  • Scopus İndeksli Yayınlar Koleksiyonu [301]
  • WoS İndeksli Yayınlar Koleksiyonu [268]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@Kent

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide || Instruction || Library || İstanbul Kent University || OAI-PMH ||

İstanbul Kent University, İstanbul, Turkey
If you find any errors in content, please contact:

Creative Commons License
İstanbul Kent University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Kent:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.