• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Fakülteler
  • Eczacılık Fakültesi
  • Eczacılık Meslek Bilimleri Bölümü
  • Makale Koleksiyonu
  • View Item
  •   DSpace Home
  • Fakülteler
  • Eczacılık Fakültesi
  • Eczacılık Meslek Bilimleri Bölümü
  • Makale Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A comparison of electrospinning and pressurized gyration: Production of empagliflozin-loaded polylactic acid/ polycaprolactone fibrous patches

Thumbnail

View/Open

Tam Metin / Full Text (5.471Mb)

Date

2025

Author

Yekeler, Hümeyra Betül
Kabaoğlu, İlke
Güler, Ece
Graça, Manuel Pedro F.
Gündüz, Oğuzhan
Kalaskar, Deepak M.
Çam, Muhammet Emin

Metadata

Show full item record

Citation

Yekeler HB, Kabaoglu I, Guler E, Graça MPF, Gunduz O, Kalaskar DM, Cam ME. 2025 A comparison of electrospinning and pressurized gyration: Production of empagliflozin-loaded polylactic acid/polycaprolactone fibrous patches. J. R. Soc. Interface 22: 20240635.

Abstract

Novel therapeutic strategies are essential for enhancing efficacy and accelerating the treatment of diabetes mellitus. This investigation focused on incorporating empagliflozin into a composite of polylactic acid and polycaprolactone, resulting in the fabrication of drug-loaded fibrous patches (DFPs) for transdermal application, both by electrospinning (ES) and by pressurized gyration (PG). Scanning electron microscopy results revealed that DFPs generated through the PG method exhibited smaller diameters and a larger surface area than ES. Fourier-transform infrared spectroscopy and X-ray powder diffraction analyses confirmed the successful encapsulation of the drug in both DFPs. DFPs/PG exhibited a controlled release of 98.7 ± 1.3% of the total drug over 14 days, while DFPs/ES released 98.1 ± 2.1% in 12 days, according to in vitro drug release studies. This study underscores that the PG method can generate DFPs with extended controlled release. 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide test results validate the biocompatibility of DFPs, affirming their lack of adverse effects on human dermal fibroblast cell viability. Consequently, DFPs can be manufactured for transdermal administration using PG, exhibiting similar characteristics to ES but with the added advantage of mass production capability.

Source

Journal of The Royal Society Interface

Volume

22

Issue

224

URI

https://royalsocietypublishing.org/doi/10.1098/rsif.2024.0635
https://doi.org/10.1098/rsif.2024.0635
https://hdl.handle.net/20.500.12780/1060

Collections

  • Makale Koleksiyonu [21]
  • PubMed İndeksli Yayınlar Koleksiyonu [158]
  • Scopus İndeksli Yayınlar Koleksiyonu [301]
  • WoS İndeksli Yayınlar Koleksiyonu [268]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@Kent

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide || Instruction || Library || İstanbul Kent University || OAI-PMH ||

İstanbul Kent University, İstanbul, Turkey
If you find any errors in content, please contact:

Creative Commons License
İstanbul Kent University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Kent:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.