Basit öğe kaydını göster

dc.contributor.authorTuran, Ceren
dc.contributor.authorKoray, Murat
dc.date.accessioned2025-07-14T10:38:44Z
dc.date.available2025-07-14T10:38:44Z
dc.date.issued2024en_US
dc.identifier.citationTuran, C.; Koray, M. Sürdürülebilir tedarik zinciri yönetiminde makine öğrenmesinin uygulanması. Uluslararası Sürdürülebilir İşletmecilik ve Ekonomi Stratejileri Kongresi, 11-12 Ekim 2024, 8-16.en_US
dc.identifier.isbn978-625-6671-61-4
dc.identifier.urihttps://isbescongress.org/
dc.identifier.urihttps://hdl.handle.net/20.500.12780/1195
dc.description.abstractSürdürülebilir Tedarik Zinciri Yönetimi (SSCM), tedarik zincirlerini ekonomik, sosyal ve çevresel ilkelerle uyumlu bir şekilde geliştirmeyi, optimize etmeyi ve sürdürmeyi amaçlarken, bu konuda kapsamlı bir başarı elde edilmesi dijitalleşmenin tamamlanmasına ve büyük verinin etkin bir şekilde kullanılmasına bağlıdır. Nesnelerin İnterneti (IoT) ve bilgi teknolojilerindeki ilerlemeler sayesinde dijitalleşmenin yaygınlaşması, tedarik zinciri operasyonlarının yönetimini kolaylaştırmıştır. Büyük verinin belirli protokol ve standartlara göre depolanmasını sağlamış ve Sürdürülebilir Tedarik Zinciri Yönetimi (SSCM) içinde Yapay Zeka (AI) analitik yöntemlerinin uygulanmasını kolaylaştırmıştır. Bu nedenle, bilgisayar tabanlı bir yapay zeka tekniği olan Makine Öğrenmesi (ML), Sürdürülebilir Tedarik Zinciri Yönetimi (SSCM) içindeki çeşitli süreçleri analiz etmek için öne çıkan bir araç olarak ortaya çıkmıştır. Bu süreçler arasında tedarikçi seçimi ve segmentasyonu, üretim, satış ve talep tahmini, nakliye ve dağıtım, risk değerlendirme ve envanter yönetimi yer almaktadır. Bu çalışma, makine öğreniminin Sürdürülebilir Tedarik Zinciri Yönetimi (SSCM) alanındaki uygulamaları üzerine bir literatür taraması yapmayı amaçlamaktadır. Araştırmada bu konuyu incelemek için nitel metodolojiler kullanılmıştır. Denetimli öğrenme, yarı denetimli öğrenme, denetimsiz öğrenme ve takviyeli öğrenme gibi farklı teknikleri kapsayan çeşitli makine öğrenimi algoritmaları incelenmiştir. Bulgular, bu algoritmaların uygulanmasının şirketler için tedarik zinciri verimliliğini artırdığını, israfı azalttığını, daha doğru talep tahmini yoluyla envanter yönetimini iyileştirdiğini, örüntü tanımayı kolaylaştırdığını ve operasyonel süreçleri optimize ettiğini göstermektedir.en_US
dc.description.abstractSustainable Supply Chain Management (SSCM) seeks to enhance, optimize, and sustain supply chains in alignment with economic, social, and environmental principles, achieving comprehensive success is contingent upon the completion of digitalization and the effective utilization of big data. The proliferation of digitalization, driven by the Internet of Things (IoT) and advancements in information technologies, has streamlined the management of supply chain operations. It has enabled the storage of big data according to specific protocols and standards and facilitated the application of Artificial Intelligence (AI) analytical methods within Sustainable Supply Chain Management (SSCM). Therefore, Machine Learning (ML), a computerbased artificial intelligence technique, has emerged as a prominent tool for analyzing various processes within Sustainable Supply Chain Management (SSCM). These processes include supplier selection and segmentation, production, sales and demand forecasting, transportation and distribution, risk assessment, and inventory management. This study aims to perform a literature review on the applications of machine learning within the realm of Sustainable Supply Chain Management (SSCM). The research employed qualitative methodologies to explore this subject. Various machine learning algorithms, encompassing different techniques such as supervised learning, semi-supervised learning, unsupervised learning, and reinforcement learning, were examined. The findings indicate that the application of these algorithms led to enhanced supply chain efficiency for companies, reduced waste, improved inventory management through more accurate demand forecasting, facilitated pattern recognition, and optimized operational processes.en_US
dc.language.isoturen_US
dc.publisherAsos Yayınlarıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectSürdürülebilir Tedarik Zinciri Yönetimien_US
dc.subjectMakine Öğrenmesien_US
dc.subjectTedarik Zinciri Yönetimien_US
dc.subjectSürdürülebilirliken_US
dc.subjectSustainable Supply Chain Managementen_US
dc.subjectMachine Learningen_US
dc.subjectSupply Chain Managementen_US
dc.subjectSustainabilityen_US
dc.titleSürdürülebilir tedarik zinciri yönetiminde makine öğrenmesinin uygulanmasıen_US
dc.title.alternativeThe application of machine learning in sustainable supply chain managementen_US
dc.typeconferenceObjecten_US
dc.contributor.departmentİstanbul Kent Üniversitesi, Fakülteler, İnsan ve Toplum Bilimleri Fakültesi, Uluslararası Ticaret ve Lojistik Bölümüen_US
dc.contributor.authorID0000-0002-3031-4815en_US
dc.contributor.authorID0000-0002-7859-1184en_US
dc.contributor.institutionauthorTuran, Ceren
dc.contributor.institutionauthorKoray, Murat
dc.identifier.startpage8en_US
dc.identifier.endpage16en_US
dc.relation.journalUluslararası Sürdürülebilir İşletmecilik ve Ekonomi Stratejileri Kongresien_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster