• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Fakülteler
  • Sağlık Bilimleri Fakültesi
  • Fizyoterapi ve Rehabilitasyon Bölümü
  • Makale Koleksiyonu
  • View Item
  •   DSpace Home
  • Fakülteler
  • Sağlık Bilimleri Fakültesi
  • Fizyoterapi ve Rehabilitasyon Bölümü
  • Makale Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A critical evaluation on nuclear safety properties of novel cadmium oxide-rich glass containers for transportation and waste management: Benchmarking with a reinforced concrete container

Thumbnail

View/Open

Tam Metin / Full Text (1.935Mb)

Date

2022

Author

ALMisned, Ghada
Şen Baykal, Duygu
Kılıç, G.
Ilik, E.
Zakaly, Hesham M. H.
Ene, Antoaneta
Tekin, H. O.

Metadata

Show full item record

Abstract

We examine the nuclear safety properties of a newly designed cadmium oxide-rich glass container for nuclear material to a bitumen-reinforced concrete container. Individual transmission factors, detector modelling, and energy deposition (MeV/g) in the air are calculated using MCNPX (version 2.7.0) general purpose Monte Carlo code. Two container configurations are designed with the material properties of cadmium dioxide-rich glass and Concrete + Bitument in consideration. First, individual transmission factors for 60 Co and 137 Cs radioisotopes are calculated. To evaluate potential environmental consequences, energy deposition amounts in the air for 60 Co and 137 Cs are also determined. The minimum gamma-ray transmission rates for two container types are reported for a cadmium dioxide- rich glass container. In addition, the quantity of energy deposition is varied depending on the container type, with a lower value for cadmium dioxide-rich glass container. The 40% cadmium dioxide-doped glass container provides more effective safety than the Cement + Bitumen container, according to the overall findings. In conclusion, the utilization of cadmium dioxide-doped glass material along with its high transparency and advanced material properties may be a significant and effective option in areas where concrete is required to assure the safety of nuclear materials.

Source

Frontiers in Physics

URI

https://www.frontiersin.org/articles/10.3389/fphy.2022.1080354/full
https://hdl.handle.net/20.500.12780/559

Collections

  • Makale Koleksiyonu [20]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@Kent

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide || Instruction || Library || İstanbul Kent University || OAI-PMH ||

İstanbul Kent University, İstanbul, Turkey
If you find any errors in content, please contact:

Creative Commons License
İstanbul Kent University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Kent:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.